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We have compared our results with the reports pointed out to us by Ruxton (Phys. Rev. E,
preceding Comment), but we have not found crucial contradictions. As a consequence of spatial
dispersity, our model also shows local chaos in an enhanced parameter range, but global chaos is

not present, similarly to the other observations.
PACS number(s): 05.40.4j, 05.45.+b, 05.70.Jk

In his comment [1], Ruxton compares our results [2]
with a series of related publications [3] from the ecolog-
ical literature. He finds a seeming contradiction: We
did not observe low-dimensional chaos in our model, al-
though other simulations suggest that in spatially dis-
tributed populations, chaos is more likely. Here we in-
tend to show that there is no real contradiction between
our results and earlier reports, if one carefully compares
the statements belonging together.

One specific example cited extensively by Ruxton is
the model investigated by Bascompte and Solé (BS) [4].
Indeed, BS chose the same map for local dynamics as we
chose. However, while BS modeled the interaction be-
tween neighboring local populations via normal diffusion
[4], we introduced a threshold condition and a time-scale
separation in the spatial migration step [2]. Time-scale
separation means that dispersal events are considered to
be much faster than reproduction. Certainly, this as-
sumption fails to concern bacteria or mammals, but fly-
ing insects of high mobility and of slow reproduction rate
can be good candidates for comparison. [For example,
the cockchafer (Polyphylla fullo) has a reproduction cy-
cle of 4-5 years, but it can migrate several kilometers in
a few days.] In spite of the fact that fast diffusional in-
teraction triggered by a threshold condition may result
in fundamentally different behavior than that of normal
diffusion, we found that there is no sharp difference be-
tween BS’s and our observation.

Let us repeat our main conclusion [2]: There is no sign
of low-dimensional collective chaos in a system of local
populations diffusively coupled to the neighboring ones
and obeying a threshold condition. Emphasis is on col-
lective dynamics, which intends to mimic the behavior of
a metapopulation. Why have we concentrated on global
behavior? To answer this we borrow BS’s formulation:
“As the bulk of the data record involves population cen-
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sus over a given area, they would be closer to global dy-
namics than local ones.” BS did not systematically ana-
lyze the global behavior of their model, however, it seems
that they did not find low-dimensional global chaos, ei-
ther. This is not surprising, because it is more or less
well established that noisless coupled map lattices with
nearest neighbor diffusive coupling do not exhibit collec-
tive chaos [5]. The lack of collective chaos in our model is
not as clear, because, as we explained [2], the time-scale
separation may build up long range effective correlations
in the system.

Concerning the local dynamics, BS found that increas-
ing lattice size, as well as increasing the diffusional con-
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FIG. 1. Bifurcation diagrams as a function of the threshold
parameter k, (a) a single map with open boundaries, (b) the
site 1 = 3, j = 4 in a lattice of size L = 8, and (c) the lattice
average in the same system as (b). See text.
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stant, extends the range of local chaos to a parameter
range, where chaos is not present in an isolated map [4].
To check the role of spatial dispersity in our model, we
performed a bifurcation analysis similarly to BS. In Fig.
1 we plotted the values of 1000 iterations after discarding
1000 initial points for different thresholds, keeping the
other parameters at the strong chaotic range (A = 100.0,
a = 1.0, B = 8.8, see Ref. [2] for notations). Figure 1(a)
refers to a single map with open boundaries: When the
populational density exceeds the threshold k, at the next
step the value will be N, = 0.7k as a consequence of
outward migrations. The threshold rule destroys chaos
immediately after becoming effective (k < 4.4304). This
compares with Fig. 1(b), where the appropriate values
for a single site in a lattice of L = 8 x 8 are plotted.
In this spatially extended system, the local evolution re-
mains chaotic (or at least complex) in a wide threshold
range (k > 2.350), where a single map shows strict pe-
riodicity. This result is in agreement with BS’s [4] and
others observations [3], i.e., local chaos is more likely in
distributed systems. However, we think that there is no
way to observe such a local chaos in a natural metapop-
ulation. One reason is that a local habitat in nature is
not as well defined a unit as a site in a lattice model, the
area, location, borders, etc., are changing dynamically in
time, if it is possible to define them at all.

Figure 1(c) shows the asymptotic values for the whole
lattice. At large threshold values (k > 2.65), the be-
havior is noiselike in the sense that the lattice average
fluctuates around an (temporal) average with a Gaussian
amplitude distribution, and the width of this Gaussian
decreases according to the well-known square-root law
with increasing number of lattice sites. Note that simi-
lar noisy behavior was observed by BS, too (cf. Fig. 7
in Ref. [4]), for the global dynamics. At smaller thresh-
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old values, period-four, period-two, and fixpoint behavior
settle down, but low-dimensional collective chaos has not
been found. Obviously, the noiselike behavior is not “real
noise,” because the fluctuations in the average are the
consequences of deterministic rules, there is no external
source of perturbations. This also means that the dynam-
ics may obey “high-dimensional chaos,” however, from
the point of view of practical evaluation of field observa-
tions, this makes no real difference. Low-dimensional col-
lective chaos would mean that there exists one or at most
a few “master” degrees of freedom governing the time
evolution of an otherwise complex system, and obeying
some nonlinear equation(s) of motion.

What are the main differences now between BS’s and
our model? One is very important: While the diffusive
coupling without a threshold condition and time-scale
separation makes the dispersed system inherently insta-
ble, therefore, an additional rule was necessary for BS to
avoid negative values, our model does not need such a
(populational dynamically unreasonable) adjusting step.
Moreover, it is interesting that we did not find spatially
ordered patterns when the system size is large enough
and the local dynamics is strongly chaotic, which shows
that external noise is not necessary when mimicing more
a natural spatial distribution of populations.

Finally, let us comment on childhood diseases as a good
example for natural chaos [1]. We share the opinion of
Ruxton that these are a time series of “best quality” to
check different models from the point of view of chaos as
well. In spatially dispersed disease models, however, one
should consider that human mobility is far from being a
nearest neighbor interaction, and a nonlocal connection
may lead synchronized chaos even at surprisingly low co-
ordination numbers [6].
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